## **Biophysics of Color Vision**

Simon Invia

e-mail: <a href="mailto:simon.invia946@ens.tsu.edu.ge">simon.invia946@ens.tsu.edu.ge</a>
Department of Physics,
Faculty of Exact and Natural Sciences,
Ivane Javakhishvili Tbilisi State University,
3 I. Chavchavadze Ave., Tbilisi 0179, Georgia

This bachelor's thesis presents a complex biophysical analysis of the formation of human color vision and its deficiencies. Within the scope of this research, we are creating a computational simulation model to investigate how population variations of cone cells affect color discrimination thresholds (Just Noticeable Difference - JND) across the entire visible spectrum.

## **Key Findings:**

- **Normal Trichromatic Vision:** The simulation demonstrates optimal color discrimination at a wavelength of 550 nm with minimal JND values of ~1.0-1.1 nm. This confirms the well-established fact that peak sensitivity is observed in the yellow-green spectral region, where the sensitivities of L and M cones have the greatest overlap.
- Color Vision Deficiencies: Protanopia and deuteranopia show severely impaired discrimination in the red-green spectral regions (520-650 nm), where JND values are increased by 8-fold compared to normal vision (22+ nm compared to 2.7 nm). This validates the functional impact of cone cell deficiencies.
- **Spectral Specificity:** Tritanopia exhibits a selective impairment in blue-yellow color discrimination (6.1 times worse than the control group), while partially retaining redgreen color discrimination, though not to the extent predicted by theory.

## Significance:

This study provides a means to quantitatively assess the relationship between photoreceptor physiology and color discrimination. It offers a validated computational tool for use in the fields of vision science and education.