

Bachelors Thesis on Renewable Energies Energies and Perspectives of Biogas

Ivane Javakhishvili Tbilisi State University Faculty of Exact and Natural Sciences Bachelor's Thesis in Physics

Giorgi Jgarkava

Supervisor: Professor Tamaz Mdzinarashvili

Co-supervisor: PhD in Biology, Dr. Nino Shengelia

Tbilisi, 2025

Tbilisi, 2025

Introduction

Overview of bachelor's thesis

Comprehensive analysis of the current state and future potential of renewable energy sources, with a focus on biogas

Importance of renewable energy

Emphasize the growing significance of renewable energy sources in the global energy landscape

Highlight on biogas

Explore the unique advantages and promise of biogas as a renewable energy solution

The bachelor's thesis on renewable energies and the perspectives of biogas provides a thorough examination of the role and potential of biogas in the transition towards a more sustainable energy future.

Wind, Hydro and Geothermal energies

Wind energy uses turbines to generate electricity from moving air. It's clean but depends on wind conditions. Hydropower generates power from flowing water and is reliable, though large dams can affect ecosystems. Geothermal energy uses Earth's internal heat and provides stable, low-emission power, mainly in volcanic regions.

Solar Power

Logo for solar power, a key renewable energy source with growing market share and potential.

Biogas Case Studies

Dairy Farm Biogas Facility

A large-scale biogas plant located on a dairy farm, converting manure into renewable energy.

Urban Wastewater Biogas Plant

Agricultural Waste-to-Biogas Plant

On rural level

A biogas plant integrated into a municipal A biogas plant that converts agricultural waste, such wastewater treatment facility, generating energy as crop residues and animal manure, into renewable from sewage. energy.

Biogas Production Processes

Biogas Production Method	Efficiency (%)
Anaerobic Digestion	55-80
Gasification	70-90
Pyrolysis	60-80
Fermentation	40-60
Thermochemical Conversion	65-90

^{*}Based on data from the National Renewable Energy Laboratory (NREL) and the U.S. Department of Energy's Alternative Fuels Data Center.

Implementing Biogas Solutions

Assess the site location, available feedstock, and and infrastructure to determine the feasibility and and optimal design of the biogas project.

Conduct a detailed analysis of the available organic organic waste or agricultural feedstock to determine its suitability for biogas production, production, including composition, energy content, content, and potential yield.

Choose the appropriate biogas technology and equipment based on factors such as feedstock, desired output, and project scale to ensure maximum efficiency and performance.

Design the biogas digester system, including the reactor, feedstock pre-treatment, and gas storage components, to optimize the biogas production process.

Site Evaluation

Feedstock Analysis

Technology Selection

Digester Design

Construction and Installation

Commissioning and Testing

Operations and Maintenance

Regulatory Compliance

Oversee the construction and installation of the biogas plant, ensuring adherence to safety standards and regulatory requirements.

Conduct rigorous testing and commissioning of the biogas plant to verify its performance, identify and address any issues, and ensure smooth operation.

Develop a comprehensive operations and maintenance plan to ensure the long-term reliable and efficient operation of the biogas plant, including monitoring, preventive maintenance, and troubleshooting.

Ensure the biogas project adheres to all relevant environmental, safety, and energy regulations, obtaining necessary permits and approvals throughout the implementation process.

Barriers to Biogas Adoption

• High Upfront Costs

Biogas production systems require significant initial investment, which can deter potential adopters, especially smaller-scale operations.

Regulatory Challenges

Navigating the complex web of policies, permits, and regulatory requirements can be a major barrier to implementing biogas projects.

Feedstock Availability

Securing a reliable and consistent supply of organic feedstock, such as agricultural waste or municipal solid waste, can be a logistical challenge.

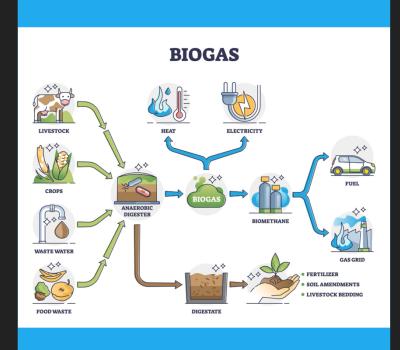
Technical Complexities

The operation and maintenance of biogas production systems require specialized knowledge and skills, which can be a barrier for some adopters.

• Grid Integration Issues

Connecting biogas-powered electricity generation to the existing grid infrastructure can be complex and costly, hampering widespread adoption.

Lack of Awareness and Education


Limited public understanding of the benefits and potential of biogas technology can hinder its adoption, especially in areas with no previous exposure.

Market Competition

The competitiveness of biogas compared to other renewable energy sources, as well as traditional fossil fuels, can impact its widespread adoption.

The Future of Biogas

The future of biogas holds immense promise as a transformative renewable energy solution. With its ability to produce clean and sustainable energy from organic waste, biogas has the potential to revolutionize the way we power our homes, industries, and transportation systems. As global efforts to combat climate change and reduce carbon emissions intensify, the role of biogas in the renewable energy landscape is becoming increasingly crucial.

