Effect of heat treatment on the Bi-2223 phase formation

Ani Gersamia

E-mail: ani.gersamia725@ens.tsu.edu.ge
Department of Chemistry, Faculty of Exact and Natural Sciences
Ivane Javakhishvili Tbilisi State University
3, I. Chavchavadze Avenue, Tbilisi, 0179, Georgia

Fabrication of pure Bi-2223 bulk polycrystalline samples is complex due to the formation of several unwanted phases, including Bi-2212, Bi-2201, and Ca2PbO4. Residual secondary phases result in weak intergranular links and flux pinning capability, limiting the application of the Bi-2223 superconductor. In the literature, the effects of heat treatment on the reduction of impurity phases in high-temperature superconductors have been extensively studied, demonstrating the potential to improve Tc and Jc values by carefully tuning the process parameters.

The presented study focuses on the effect of thermal treatment on Bi-1223 high-temperature superconducting samples. The powder processing of $Bi_{1.7}Pb_{0.3}Ca_2Sr_2Cu_3O_{9+\delta}$ superconducting samples was performed at 800°C, and their final synthesis was conducted at various temperatures. As a result, we observed the pure phase of Bi-1223 at a temperature of 850°C.