Deep-sea turbidite systems:

Trace fossils and Ichnofacies

David Maisuradze

david.maisuradze432@ens.tsu.edu.ge

Geology department, Faculty of exact and natural sciences, Ivane Javakhishvili Tbilisi State University, University st.13, Tbilisi, Georgia, 0186

Deep-sea turbidite systems form through sediment gravity flows and display complex sedimentary architectures. A key distinction exists between fine-grained and coarse-grained turbidite systems, with fine-grained systems typically accumulating silt- and clay-rich sediments under stable, low-energy conditions that favor abundant, diverse trace fossil assemblages. In contrast, coarse-grained turbidite systems are sandier and more erosive, with rapid sedimentation that limits preservation of traces.

Turbidite depositional systems display a rich diversity of trace fossils both pre- and post-deposition, mainly consisting of ethological types such as: *Pascichnia, Fodinichnia, Agrichnia, Chemichnia, Domichnia and Repichnia.* Deep-sea turbidite systems contain trace fossils that belong to the *Nereites* ichnofacies (*Knaust, D. & Bromley, R.G. 2012*). The *Nereites* ichnofacies is subdivided into three subichnofacies:

- · *Ophiomorpha rudis* subichnofacies for thick-bedded sandstones in channels and proximal lobes in turbidite successions;
- the *Paleodictyon* subichnofacies for more sandy, medium-to-thin bedded "normal" flysch;
- the *Nereites* subichnofacies for mud-rich dystal flysch;

These trace fossil assemblages provide valuable insights into paleoenvironmental factors like oxygen levels and sediment dynamics, enhancing our understanding of benthic activity and depositional processes in deep-marine turbidite environments.